The State of MLOps in 2024
According to McKinsey, enterprises scaling AI report 3-5x faster model deployment cycles. This guide analyzes architectures from leading AI companies deploying 50+ models in production.
Feature Store Architecture
Netflix’s Feast implementation handles 15TB of daily feature updates:
# Feature store provisioning (Terraform)
resource "google_bigquery_dataset" "feature_store" {
dataset_id = "prod_feature_store"
location = "US"
labels = {
ml_team = "recommendations"
}
}
resource "feast_feature_table" "user_profiles" {
name = "user_embeddings"
entities = ["user_id"]
features = [
{
name = "last_30d_engagement"
dtype = "FLOAT"
}
]
}
Model Training Pipelines
Kubeflow Pipelines DSL for GPU-optimized training:
@component(
packages_to_install=["tensorflow==2.12.0"]
)
def train_component(
data_path: InputPath(),
model_path: OutputPath(),
epochs: int = 50
):
import tensorflow as tf
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = build_keras_model()
train_data = load_dataset(data_path)
model.fit(train_data, epochs=epochs)
model.save(model_path)
Production Monitoring
Alerts for data drift using KS-test and PSI metrics:
Metric | Threshold | Action |
---|---|---|
Feature Drift | KS > 0.15 | Retrain |
Prediction Shift | PSI > 0.25 | Rollback |
CI/CD for ML Models
GitOps workflow for model deployments:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: model-deploy
spec:
destination:
namespace: ml-production
server: https://kubernetes.default.svc
source:
repoURL: git@github.com:company/ml-models.git
path: kustomize/prod
targetRevision: HEAD
syncPolicy:
automated:
prune: true
selfHeal: true
Case Study: Financial Fraud Detection
JPMorgan Chase’s pipeline improvements:
- Feature lookup latency reduced from 120ms to 8ms using Redis
- Automated retraining reduced false positives by 22%
- Model version rollbacks within 90 seconds